Call

Given:

  • Radius of the clay cylinder, \( r = 20 \) cm = \( 0.20 \) m
  • Angular velocity, \( \omega = 10 \) rev/s
  • Coefficient of friction, \( \mu = 0.1 \)
  • Force applied by the potter, \( F = 10 \) N

Calculations:

First, let's calculate the tangential velocity:

\[ v = r \times \omega \\ v = 0.20 \times 10 = 2 \, \text{m/s} \]

Now, let's calculate the normal force:

\[ \text{Acceleration} = \frac{{v^2}}{{r}} = \frac{{(2 \, \text{m/s})^2}}{{0.20 \, \text{m}}} = 20 \, \text{m/s}^2 \]

Now, let's find the normal force:

\[ \text{Mass} = \frac{{\text{Force}}}{{\text{Acceleration}}} \\ \text{Mass} = \frac{{10 \, \text{N}}}{{20 \, \text{m/s}^2}} = 0.5 \, \text{kg} \] \[ \text{Normal Force} = \text{Mass} \times \text{Acceleration} = 0.5 \, \text{kg} \times 20 \, \text{m/s}^2 = 10 \, \text{N} \]

Finally, let's calculate the frictional force:

\[ \text{Frictional Force} = \text{Coefficient of Friction} \times \text{Normal Force} = 0.1 \times 10 \, \text{N} = 1 \, \text{N} \]

Now, we have the force and velocity, so let's calculate the power:

\[ \text{Power} = \text{Force} \times \text{Velocity} = 10 \, \text{N} \times 2 \, \text{m/s} = 20 \, \text{W} \]